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Noisy Precursors of Nonlinear Instabilities 
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This paper studies the effect of external noise on systems displaying nonlinear 
instabilities of periodic orbits. Each class of instability is found to have its own 
characteristic signature, as displayed by the power spectrum. Results are derived 
for each of the codimension-one instabilities familiar from bifurcation theory. 
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1. I N T R O D U C T I O N  

This paper explores the effect of noise on systems displaying periodic 
behavior when they are close to a dynamical instability. The very notion of 
instability implies that small fluctuations grow with time--a system which 
is "close" to being unstable can be expected to be extremely sensitive to 
external perturbations. These ideas are very familiar from studies of critical 
phenomena in statistical mechanics, as well as from stability analyses of 
nonlinear dynamical systems. 

Broadly speaking, we can distinguish between various kinds of 
dynamical behavior that can become unstable: time-independent solutions, 
corresponding to fixed points of differential equations; regular time depen- 
dence, such as periodic or quasiperiodic oscillations; and chaotic behavior, 
which has received the lion's share of the recent attention directed toward 
nonlinear dynamical systems. The present work focuses on the instabilities 
of periodic orbits, and in particular on the effects of external noise on the 
observed power spectrum for a system near an instability. We further 
restrict attention to the various classes of codimension-one bifurcations; 
that is, the typical instabilities encountered as a single parameter is varied. 

Often, periodic orbits are studied by considering a Poincar6 return 
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map associated with that orbit. The advantage of this approach is that it 
turns a nonlocal stability analysis of a continuous flow into a local stability 
analysis of a discrete map of one fewer dimension. The drawback is that, in 
practice, it is extremely difficult to analytically construct the appropriate 
mapping from the differential equation. 

Related to this difficulty is the problem of modeling the external noise. 
Usually, one has a better physical feel for the differential equation, so the 
model of fluctuations is better motivated by introducing a random element 
to the differential equation, rather than to the reduced discrete mapping. 
Consequently, this paper does not make the reduction to discrete maps, 
although (see Fig. 2) the basic ideas may be usefully pictured in terms of 
such maps. 

The original motivation for the present work came from measurements 
performed on a nonlinear circuit. (1) The task there was to determine the 
precise value of bias current where the onset of a period doubling 
instability occurred. Far from being interested in the effects of noise on the 
system, we wanted (as is the usual case in experimental physics) to reduce 
the background noise as much as possible. A typical sequence of power 
spectra is sketched qualitatively in Fig. 1--the signal for period doubling is 
the appearance of a small spike at one-half the fundamental frequency co. 
The instability has certainly occurred by the time one reaches Fig. le; 
unfortunately, the substantial broad-band noise rise centered at co/2 in 
Fig. ld makes precise determination of the onset of the instability all but 
impossible. 

The simple picture developed in this paper explains the major features 
of Fig. 1; however, the theory developed also implies a generality that 
should extend to all other codimension-one dynamical instabilities, regar- 
dless of the physics behind the governing differential equations. In fact, the 
basic predictions of the theory have been tested by, and agree with, 
experiments on driven p-n junctions/2) 

To put the present work into context, we call attention to a sample of 
other recent investigations of the effect of noise on the instabilities of 
periodic dynamical systems/3 12) Usually, these works take as starting 
point a discrete mapping, (3,s 12) rather than a continuous flow, (4~ subject to 
random noise with the focus on either the asymptotic probability density 
or the power spectrum. By and large, the emphasis has been on the scaling 
laws for the bifurcations of dynamical systems leading to chaos. For exam- 
ple, one well-studied problem concerns the level of random noise required 
to obscure the remainder of the cascade of period doubling bifurcations 
beyond some given 2U-periodic oscillation. The scaling of this level as 
N ~  oe has been determined theoretically in a variety of ways for the 
universality class represented by the logistic map, (3-6~ and agrees with 
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Fig. 1. Qualitative sketch of a typical sequence of power spectra for the nonlinear circuit 
studied in Ref. 1, as an external parameter is varied. The onset of period doubling occurs 
somewhere between Fig. lc and Fig. le. 

822/38/5-6-18 



1074 Wiesenfeld 

results from an experiment performed on a driven p-n junction. (12) In con- 
trast, this paper does not deal with asymptotic scaling laws in the approach 
to chaos--the focus on the simplest instabilities broadens the relevance of 
this work to nonlinear systems that may or may not display chaotic 
behavior for some range of parameters. 

Work more directly relevant to the present paper may be found in the 
laser literature. These studies considered the effects of noise on the power 
spectra near the onset of a single instability, although they confined them- 
selves to the dynamical equations directly relevant to laser systems. (13-15/ 
That body of work focused on the very first instability, the onset of lasing. 
The present work is broader in scope, and points out the general nature of 
the noisy power spectra for any sort of dynamical system. This comment is 
not meant to minimize the laser work: those theories(13 '14~ are based on a 
fully microscopic (quantum mechanical) physical description, and 
experimental evidence (15) shows that those analyses are substantially 
correct. In contrast, the present work begins with the (classical) ordinary 
differential equation (1), which is often (though not always) the starting 
point of a phenomenological description. On the other hand, the lesson 
taught by thig paper is that, quite generally, the "noisy precursors" are a 
direct consequence of the existence of a (nearby) dynamical 'instability. 

The body of the paper is organized as follows. In Section 2, we 
introduce a simple picture to motivate and define the mathematical model 
for external noise. The formal solution of this model is presented in Sec- 
tion 3, and the expected power spectrum for each class of codimension-one 
instability is derived on a case by case basis in Section 4: Figures 3-7 sum- 
marize these formal results. Two specific examples illustrating the main 
features of the analysis are presented in Section 5. Finally, a discussion of 
the limitations and conclusions of the present work is given in Section 6. 

2. M O D E L I N G  T H E  N O I S E  

The purpose of this section is twofold. First, we have to decide how to 
mathematically model the interaction of a system with external pertur- 
bations. Second, the simple picture we will use to guide our choice of 
model will enable us to anticipate, in an intuitive fashion, the main result of 
this paper. This heuristic reasoning will find its formal justification in Sec- 
tions 3 and 4. 

We begin by motivating the model. Consider a dynamical system 
described by the system of differential equations 

~ =F(x,  t), x ~  N (1) 

where F may or may not depend explicitly on time. (The system is said to 
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be nonautonomous or autonomous, respectively.) Suppose the system has 
an asymptotically stable T-periodic solution x0: 

Xo(t + T) = Xo(t) (2) 

This solution describes a closed orbit in phase space, with nearby orbits 
approaching Xo as time increases. Imagine that a small perturbation kicks 
the system off of the limit cycle--it then relaxes back to the periodic orbit. 
For small perturbations, the transient q = X - X o  is governed by the 
dynamical equation (1) linearized about x 0, 

/I = D F ( x o ) "  q (3)  

where DF is the matrix of periodic functions 

~3F i 

( D F ) ~  Oxj=-- x =xo (4) 

When an instability is approached as some parameter varies, the relaxation 
time increases, and the transient response contributes more to the observed 
output. It is the contribution of the transients that we want to focus on as 
the external noise continually kicks the system away from the limit cycle. In 
this picture, the noise enters as a stochastic forcing term, so that (3) 
becomes 

il = DF(xo)" rl + ~(t) (5) 

where { is taken for convenience to be Gaussian white noise: 

(~(t)> =0,  (~,(t) Cj(t + r)> = xo. 3(r) (6) 

Equation (5) is our starting point for analyzing the effect of noise on 
periodic nonlinear systems. As discussed in Section 6, there is a limit as to 
how well a linearized equation (5) can capture the nonlinear dynamics of 
the system. Furthermore, this is not the only way the noise might be 
modeled. Another way is to let the parameters of the system (1) fluctuate, 
in which case the phase space portraits fluctuate. The present model is a 
more static picture--the phase space portraits are frozen in, and the point 
representing the instantaneous state of the system is subject to external 
kicks. The situation is akin to a ball rattling around on a roulette wheel. 

What can we expect to come out of an analysis based on this model? 
For definiteness, consider the case where the stable orbit Xo is close to 
undergoing a period-doubling bifurcation. The situation is depicted in 
Fig. 2, in which a Poincar6 section is taken transverse to the periodic orbit. 
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Fig. 2. (a) A Poincar6 section P is taken transverse to the closed phase space orbit 
corresponding to the periodic solution x0. (b) Successive intersections of a trajectory relaxing 
back to the stable limit cycle x0. 

This orbit is represented by a fixed point of the return map P. Figure 2b 
shows successive iterates of an orbit relaxing back to the stable limit 
cycle--close to a period-doubling instability, the iterates approach the fixed 
point in an alternating fashion. (It is for precisely this reason that a period- 
doubling instability is sometimes called a "flip bifurcation" in the bifur- 
cation theory of discrete mappings.)/16) The transients therefore have the 
character of a damped, 2T-periodic orbit, and the power spectrum should 
show a broad bump peaked at half the fundamental frequency of Xo. This is 
the origin of the precursor exhibited in Fig. ld. 

Equation (5) is linear with periodic coefficients, and may be solved 
with the help of results from Floquet theoryJ 17) In fact, we construct a 
complete solution to this model in the next section. In the vicinity of a 
bifurcation, a great simplification is possible, and leads us to a classification 
scheme for the observed noisy power spectra corresponding to each type of 
instability, of which the period-doubling bifurcation is but one example. 
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3. F O R M A L  S O L U T I O N  

We now construct the solution of Eq. (5). We consider real equations 
only, so the perturbation q(t) and the autocorrelation functions C,,,,(,) are 
real. However, in applying the results of Floquet theory, the introduction 
of complex functions offers such a great computational advantage that the 
derivations in this paper will be performed using complex notation. From 
Floquet theory, we know several facts. 

First, there is a set of linearly independent solutions 0 k of the 
homogeneous equation associated with Eq. (5), of the form 

Ok(t) = ePk'zk(t ) (7) 

where the f f  are periodic functions with the same period as DF(xo). For 
convenience, we assume that time is scaled so that this period is 27c. 
Because the Floquet exponents p~ play a central role in the derivation and 
subsequent interpretation of the results, it is worthwhile to pause and dis- 
cuss their basic properties. The Pk are, in general, complex numbers, and 
stability of the orbit x o requires that Re Pk < 0 for all k. The imaginary part 
of Ok is to some extent arbitrary--from Eq. (7) we see that Pk is determined 
only up to an integer multiple of i. (Rather than thinking of the p~ as lying 
in the complex plane, one should think of them as lying on a cylinder, with 
the imaginary axis wrapped around the "waist" of the cylinder.) We will 
eliminate this ambiguity in Im Pk by fixing 

�89 < Im pk--.< �89 (8) 

We are considering real differential equations (1), so the Pk naturally fall 
on the line I m p  = 0, or the line l m p  = 1/2, or they occur in complex con- 
jugate pairs. Finally, as the parameters of the system are varied, the Pk 
move around on the complex cylinder--an instability occurs when one or 
more of the Pk cross the imaginary axis. 

Returning to the main line of development, we will assume that all N 
Floquet exponents are distinct. In this case, we are guaranteed a complete 
set of N linearly independent solutions 0 k. 

The 0 ~ may be used to form a fundamental matrix q~(t) for the system 
(5): 

*(t)  = EO'(O, O~(t),..., O"(0] (9) 

so that 0 ~ forms the kth column of q~(t). If q~(0) is nonsingular, then we 
are guaranteed that q~(t) remains nonsingular: we can always choose q~(0) 
to be invertible, hence its inverse ~ - 1  exists for all t. 
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The importance of the fundamental matrix is that the general solution 
of Eq, (5) may be expressed as 

q(t) = O(t)  f~ * - l ( t ' )  ~(t') dt' (10) 

In writing Eq. (10), we have assumed the homogeneous initial conditions 
q(0) = 0. This is an unimportant restriction--our results are insensitive to 
the particular choice of initial conditions. 

From Eq. (10), we arrive at once at the expected result that 
( q ( t ) ) = 0 .  We now proceed to the (general) second moment 
(qm(t) lln(t+ 7:)). First, rewrite Eq. (10) in component form 

rim(t) = 2 CI)mr(t) 2 -1 , Jr ,  (t )~ , ( t ' )d t '  (11) 
r S 

Using Eq. (6), the second moment reduces to 

(~]m(t)  ~]n( t + ~,) ) 

fo? = 2  q~rnr(t) qSnk(t +'~) -1 , XsZqSrs (t ) Cbkl~(t ') dr' (12) 
rk 

To make further progress, it is necessary to examine more closely the fun- 
damental matrix O(t) and its inverse q~-l(t). From Eqs. (7) and (9), we 
can express �9 as the set of column vectors 

r = [eO~'Zx(t ) ..... e~ 

so that 

C])mr= ePrtZm r (13) 

where )~,,r is the ruth component of Z r. It follows that the inverse matrix 
may be written as the set of row vectors 

O-l(t)= 

so that 

where 

(D~s 1 = e-Pr 'Ors  ( 1 4 )  

Zk(t)" ~g,(t) = 6k, (15) 
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Equation (15) ensures that the matrix (14) gives the inverse of matrix (13). 
The vector functions X and ~ are (possibly complex) 2r~-periodic functions. 
Next, express the exponents Pk as the sum of real and imaginary parts: 

Pk = ak + ibk (16) 

Using Eqs. (13), (14), and (16), the ensemble average Eq. (12) may be 
written 

= ~ h m , ( t )  hn~( t+~)e  a~ e (ak+ar)('-'') ~tCs, grs(t ')gkl(t '  ) dt' (17) 
rk sl 

where 

hm~(t) =- e~b'~Zm~(t ) (18) 

g,s( t') = e-ibrctprs( t ') (19) 

and 

are bounded, though not necessarily periodic, functions of time. 
It should be emphasized that Eq. (17) is an exact consequence of 

Eq. (5). 
Equation (17) is the main result of this section, and is the starting 

point for examining various special cases in Section 4. 
We now make the important observation that, near an instability, an 

enormous simplification o f  Eq. (17)/s possible. So far, we have been able to 
discuss both autonomous and nonautonomous systems of the form Eq. (1) 
simu]taneously--we must now draw an important distinction between the 
two cases. 

First consider the nonautonomous case. Then near an instability, a 
single Floquet exponent p l - -o r  a complex conjugate pair pl,  p2--has a 
small (negative) real part, while all other exponents Pk have relatively large 
(negative) real part 

al/ak ~ 1 (20) 

Since the integrand in Eq. (17) is the product of a decaying exponen- 
tial and a bounded, oscillating function, the r-- 1, k = 1 term dominates the 
expression for large t. It is the properties of this dominant term which lead 
to the main noisy precursor results for the power spectrum. 

Now consider the autonomous case--here the system is constrained to 
always have a zero exponent, say, PN = 0. Geometrically, this corresponds 
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to the fact that the flow in phase space is neutrally stable to perturbations 
along the periodic orbit. Near an instability, we again have al small, but 
now we retain four terms in Eq. (17): (r, k) = (N, N), (N, 1), (1, N), and 
(1, 1). The first three of these add features that are not present in the non- 
autonomous case; they essentially serve to broaden the &function power 
spectrum from the basic periodic orbit Xo. Rather than pause here to com- 
pute their effect, we postpone the details until the Appendix. 

Keeping in mind this basic distinction between the autonomous and 
nonautonomous problems, we are now ready to unveil the noisy power 
spectrum characteristic of each of the codimension-one bifurcations. 

4. P R E C U R S O R S  OF C O D I M E N S I O N - O N E  INSTABIL IT IES 

According to bifurcation theory, (16) the periodic orbit Xo generically 
loses stability in one of three ways as a single parameter is varied--such 
instabilities are called codimension-one bifurcations: 

(i) A single p~ crosses into the right half-cylinder along the real 
axis. In a deterministic analysis, one usually distinguishes three subcases 
according to the symmetry and so-called nondegeneracy conditions of the 
problem. For our purposes, only the symmetry considerations play a 
special role--we will therefore consider separately the unsymmetric case 
(corresponding to the saddle-node and transcritical bifurcations) and the 
symmetric case (corresponding to the pitchfork bifurcation). 

(ii) A single Pk crosses into the right half-cylinder along the line 
b = 1/2. This corresponds to a period-doubling instability. 

(iii) A pair of complex conjugate Pk cross into the right half-cylinder. 
This is often called a Hopf bifurcation, and corresponds to the onset of 
"motion on an invariant two-torus" (provided certain "strong resonances" 
are avoided~ is, either phase locked or quasiperiodic oscillations. 

In each of these cases, we consider the expected power spectrum before 
the instability occurs, so that the basic orbit Xo is still stable. The results 
give us the characteristic "noisy precursor" spectrum corresponding to each 
class of codimension-one bifurcation. 

4.1. Sadd le -Node  or Transcri t ical  Precursor 

We suppose that 

a ~ l a l l ~ l ,  b l = 0  (21) 
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and all the other Pk have relatively large negative real part [see Eq. (20)]. 
The instability is signaled when Pk = 0. Retaining only the dominant r = 1, 
k = 1 term, Eq. (17) reduces to 

( ~ ( t )  ~,,(t + -~)) 

= h ~ ( t )  h n l ( t + r ) e  - ~  e ~c,tgis(t )gl l ( t '  
s l  

In any measurement of a power spectrum, one needs to take a time series 
of much longer duration than any relevant characteristic time of the system 
being studied. We therefore consider the ordering 

t>> ~t>> 2~ (23) 

In this limit, we can find a simple expression for the integral appearing in 
Eq. (22). Since the gl , ( t ' )  are bounded 27r-periodic functions, we can 
express the term in square brackets as a Fourier sum: 

Z~CslgL, .( t ' )gu(t ' )= ~ Q,,e ivy' (24) 
s [  v = - - o 0  

and the integral in Eq. (22) becomes approximately Qo/(2~). This result is 
easy to understand: the integrand in Eq. (22) is the product of a bounded 
oscillation times a very slowly decaying exponential. For large t, we can 
extend the upper limit of integration to infinity. Then the integral is just the 
mean value Q0 of the oscillation times the area (2e) 1 under the exponen- 
tial. We thus have 

(rim(t) q , ( t  + r) ) = ~ Q-2~ hm~(t) h , l ( t  + z) e - ~  (25) 

which depends on both t and z. Consequently, the process described by 
Eq. (5) is nonstationary. This is not surprising, since the phase of the limit 
cycle Xo(t) distinguishes between different times t. In an operational sense, 
however, a spectrum analyzer performs both an ensemble average and a 
time average. (Typically, one takes a single time series and derives a power 
spectrum by performing time averages, and then repeats this operation on 
a sequence of different time series, adding the resulting power spectra.) 
Consequently, we may take the correlation function to be 

cm.(~)- (Um(t) ~( t  + ~) )' 

= Q__2 hml(t) h , l ( t  + ~)' e - ~  (26) 
2e 
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Expected power spectrum in the vicinity of a saddle-node or transcritical instability. 

The Fourier transform of Cmn('[ ) gives the power spectrum S, , , (o)- -  
expanding the 27z-periodic function in the Fourier series 

we find 

hml(t) hnl(t + ~) '= ~ c~te il~, ~ l=  c~* (27) 
l= o~ 

S,~,(co)=Qo ~ c~, [e2+(o- l )2]  -1 (28) 
l =  c~ 

This sum of Lorentzians should be added to the a-function spikes from the 
basic oscillation Xo(t) (and to the line-broadening features of these spikes 
present for autonomous systems). The resulting power spectrum is 
illustrated in Fig. 3. 

4.2. Symmetry Breaking (Pitchfork) Precursor 

This case is relevant when the governing equation (1) has the sym- 
metry 

F(x, t ) = F ( - x ,  t+ T/Z) (29) 

and the periodic solution shares this symmetry, namely, 

- X o ( t  + T/2) = Xo(t) (30) 
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This symmetry is fairly common, and occurs for example in the case of a 
driven, damped pendulum 

(00) ( 0 ) 
x = , F(x, t) = - 7 0  - sin 0 + A cos cot 

For small values of driving amplitude A, the solution to Eq. (1) is 
symmetric. It follows that the power spectrum of O(t) contains only odd 
harmonics of the fundamental frequency--this is the experimental signature 
of a symmetric orbit. As A is increased, this system is known to undergo a 
cascade of period doublings leading to chaos. (18) Before the first period 
doubling, however, the system undergoes a symmetry-breaking bifurcation: 
the observed power spectrum develops some even harmonic content as the 
bifurcation point is passed. (19) 

In general, we can expect to observe symmetry breaking in symmetric 
systems before period doubling. (19-22) We now examine the effect of noise 
on the power spectrum near a symmetry-breaking bifurcation. 

In fact, the details of this case are identical to those of Section 4.1, all 
the way up to the final result for the noisy power spectrum Eq. (28). The 
only difference is that the peaks of the Lorentzians do not coincide with the 
3-function spikes contributed by the basic oscillation Xo. To see this, recall 
that the derivation of the main result Eq. (17) assumed that the matrix 
DF(xo, t) [see Eq. (4)] had period 2n. Typically, we expect DF(xo, t) to 
have the same period as Xo, but in the present symmetric case Xo has twice 
the period of DF. For example, the pendulum Eqs. (1), (31) may be 
linearized about Xo(t) to give 

cos0o,,, , )(0) 
and since 0o simply changes sign after a half-period, the matrix has half the 
period of 00. 

Since the result (28) was derived for DF being 2n-periodic, it follows 
that Xo(t) is 4n-periodic. The symmetry of x0 further implies that the basic 
oscillation contributes 5-function spikes at frequencies co = 1/2, 3/2, 5/2 ..... 

Consequently, the noise-induced Lorentzians occur only in between 
these spikes. The situation is depicted in Fig. 4. Note that the noisy precur- 
sors appear precisely where the new even harmonic spikes are anticipated 
after the symmetry-breaking bifurcation has occurred. 

4.3. Period-Doubling Precursor 

In this case a single exponent approaches the imaginary axis with 

al = -e ,  bl = li (33) 
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Fig. 4. Expected power spectrum in the vicinity of a symmetry-breaking (i.e., pitchfork) 
instability. The symmetry of the unperturbed orbit is reflected by the absence of spikes at even 
harmonic frequencies. 

In Eq. (17), we retain only the r =  1, k =  1 term, and again arrive at 
Eq. (22). This time, however, the functions hml(t ) and gml(t) have an 
additional property: they merely change sign after half a period, as can be 
seen from Eqs. (18) and (19). That is, they are symmetric functions in the 
sense of Eq. (30). 

As before, the integral may be replaced by Qo/(2e), and we are led 
once again to the resulting power spectrum (28), with a slight difference: 

Sm.(co) = Qo ~ ~,E e2 + ( c o - / ) 2 ]  1 (34) 
/ o d d  

The summation is restricted to odd l because the functions hml(t) are sym- 
metric near the period doubling, and thus the Fourier expansion (27) con- 
tains only odd-/terms. 

The resulting power spectrum near the period-doubling instability is 
illustrated in Fig. 5. It is perhaps surprising that precursor bumps are not 
predicted at the integer frequencies co = 0, 1, 2 ..... The situation is very 
much like the symmetry-breaking precursor, even though the underlying 
equations need not have any symmetry for the period-doubling case. 

(Because of the similarity between the period-doubling and sym- 
metry-breaking precursor pictures, it is perhaps worth mentioning that 
symmetry breaking of discrete mappings may be thought of as period 
doubling of a related mapping--see Ref. 22 and 23 for details.) 
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Expected power spectrum in the vicinity of a period-doubling instability. 

4.4. " 'Hopf'" P recursor  

This is the last case we shall consider. Here, a pair of complex con- 
jugate Pk are near the imaginary axis: 

Pl = --~ + ib 

p2= - e - i b ,  0 < b < � 8 9  
(35) 

and their associated periodic functions Z k are likewise complex conjugate, 
so that [see Eqs. (7) and (18)] 

hm2(t ) = h * l ( t  ) ( 3 6 )  

We now retain the four terms (r, k ) =  (1,1), (1,2), (2,1), (2,2), in 
Eq. (17): 

2 t 

(~lm(t )~l , ( t+r))= ~ hmr(t) h , k ( t + r ) e - ~ f o e - 2 ~ ( '  C)Qrk(t')dt' (37) 
r,k= 1 

where 
Qrk(t') =- ~, xs, grs(t') gkz(t') (38) 

sl 

Again we can say that the integrals contribute some average factor: 

fo e - 2~(,- "~Qrk( t') dt' ~- Ork (39) 2e 

for the ordering given by Eq. (23). 
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Next, we perform an average over t. Now, 

hml(t) h,l(t + r) = eibtgml(t ) ei6(t+T)Znl(t q- "C) 

= e2ibt[Zml(t ) Znl(l + "~)'] e ibz (40) 

and since 0 < b < 1/2, and average over t gives zero. A similar argument 
shows that the last term in Eq. (37) vanishes upon taking the time average. 
Finally, we turn to the "cross-terms." Using Eq. (36), 

hml(t) hn2(t+z)+h,~2(t)hnl(t+~)=2Re[e ib~Zml(t) Z*~(t + ~)] (41) 

Taking an average over t yields a periodic or quasiperiodic function of r, 
with fundamental frequencies b and 1. The correlation function is 

Cmn(.~ ) - ~ -  012 e_,~ Re[e_ib~zml(t) Z, ( t + r)t] (42) 

This should be compared with Eq. (26)--the only difference is that the 
oscillating piece of Eq. (42) is a function of two (possibly incommensurate) 
frequencies. The power spectrum is again the convolution of a Lorentzian 
of width 2e and a sequence of 6 functions--this time the 6 functions occur 
at the frequencies l+__b, / = 0 ,  1, 2,.... The resulting power spectrum is 
illustrated in Fig. 6. 

The results of this section are summarized in Figs. 3-6. For each 
general class of instability, there is a characteristic noisy precursor. In 

Fig. 6. 
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Expected power spectrum in the vicinity of a Hopf instability. Here, the quantity b 
[see Eq. (16)] is about 1/3. 
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essence, we have simply followed the classification scheme for codimen- 
sion-one bifurcations familiar from bifurcation theory of mappings, and 
have extended those results to include the effects of external noise. 

5. E X A M P L E S  

In this section, the general features of the previous analysis are 
illustrated by two examples. Both examples have been the subject of 
previous experimental investigations. Before turning to these, however, it is 
useful to summarize the results of Section 4 in the following compact way. 

The stability to a nonlinear dynamical system displaying periodic 
behavior is characterized by the (nonzero) Floquet exponents p~: an 
instability occurs when one exponent, say, Pl (or in the Hopf case, the pair 
p l and P2 = P*) crosses the imaginary axis. In the presence of noise, it is p l 
that characterizes the broad peaks appearing in the power spectrum. The 
size and shape of these peaks are governed by the real part of p~ (see 
Fig. 7a), while the position of these peaks are governed by the imaginary 
part of p~ (Fig. 7b). From Fig. 7b, we see that the precursor of the 
period-doubling instability (b = 1/2) can be thought of as a special case of 
the general Hopf precursors (0 < b < 1/2). 

5.1. Example One: The Driven Pendulum and the S w i f t  
Cr i ter ion 

This system, described by Eq. (31), has been studied in detail on 
analog electrical circuits. ~ As mentioned in the last section, as the drive 
amplitude A is increased from zero, the system undergoes a sym- 
metry-breaking bifurcation, followed by a sequence of period-doubling 
instabilities leading to chaos. As the system is driven even harder, other 
instabilities occur, but here we want to focus on the expected power spec- 
tra, in the presence of noise, up through the first period doubling. (24) 

Figures 8a-e show a sequence of power spectra for increasing A, for a 
drive frequency co = 1. Observe that the noisy precursor bumps occur right 
where the not-yet-born bifurcated solution has new spikes. This 
demonstrates a basic difficulty encountered when trying to precisely deter- 
mine the critical parameter value for the onset of dynamical instability. 

It should be pointed out that the "precursor" bumps do not disappear 
immediately after the bifurcation occurs, but gradually subside. Thus, since 
the co = 1/2 spike grows continuously from zero height for a period-doubl- 
ing instability, one must sweep some finite amount past criticality to pick 
out the spike above the noisy background peak. A practical criterion for 
experimentally determining the critical parameter value has been suggested 
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Fig. 7. (a) Scaling for the Lorentzian precursor peaks. The Floquet exponent p~ = --e + ib, 
-1/2 < b ~< 1/2. (b)The position of the precursor peaks is a function of b. The large spikes are 
due to the basic oscillation x 0. 

by James Swift. (25) The idea is to first sweep past the instability until the 
spike is clearly visible above the background. Since the amplitude of the 
period-doubled solution grows as the square root of the bifurcation 
parameter close enough to the instability, (16/ the power grows linearly, so 
one can then decrease the parameter and extrapolate to find the point 
where the new peak has zero amplitude. 

Note that the Swift criterion does not depend on the detailed scaling 
of the noise peaks derived here (which, as discussed in Section 4, must 
break down close enough to the instability), since it relies only on the 
deterministic elements of the bifurcation analysis. 
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Fig. 8. Expected sequence of power spectra for the driven pendulum as a function of increas- 
ing drive amplitude, up through the first period doubling, The solution must undergo sym- 
metry breaking (Fig. 8c) before period doubling (Fig. 8e). 
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5.2. Example Two: A Josephson Junction Circuit 

We have stressed that the Floquet exponents Pk play the central role 
in determining the observed power spectrum. Unfortunately, it is usually 
very difficult to actually compute the Pk from the governing dynamical 
equation. The main reason for this is that one must first find a periodic 
solution Xo to the nonlinear differential equation--a notoriously difficult 
task. Since one linearizes the basic equation about this solution, small 
errors in the expression for Xo can get magnified substantially in the ensu- 
ing stability analysis. 

Happily, there is a system that displays a period-doubling instability 
which can be accurately analyzed with a modicum of effort. This system is 
a nonlinear circuit involving a Josephson junction with a resistive shunt. If 
the self-inductance of the shunt is ignored and the circuit is driven with an 
ac bias current, the system is well described by the driven pendulum 
equation (31).(26'2v) However, if the shunt has nonnegligible self-inductance, 
and the system is driven by a d c  bias current, the appropriate evolution 
equation is (in dimensionless form): 

fiLflc6"+ tic6"+ 3(1 + flz cos 6) + sin 6 = I (43) 

where J is proportional to the voltage across the junction, and ilL, tiC, and 
I are three dimensionless parameters measuring the inductance, 
capacitance, and bias current, respectively. The original experiments on 
real junctions showed the existence of a variety of time-dependent modes 
depending on the parameter values. (28'29) Subsequent simulations using an 
analog circuit demonstrated that Eq. (43) accurately modeled the junction 
over a wide range of parameter values. ~176 More recently, (1) analytic 
headway was reported concerning a period-doubling instability observed in 
the system--comparisons with digital integration of Eq. (43) and with 
measurements made on the analog circuit showed that even fairly crude 
analytic approximations predicted x o and the onset of period doubling to 
within a few per cent. The reason for this success is that, as I is lowered 
from a high value, the oscillations in $(t) have very little harmonic content. 
Therefore, only one or two terms in a Fourier expansion for 6 is sufficient 
to give good accuracy. 

Because of the demonstrated accuracy of the analytic work, this 
system is ideal for computing the exponents pg as a function of the 
parameter values ilL, tic, and I. Here is a brief outline of the method used 
to compute the Pk. Begin by putting 

60 = jt  + A sin(jt + ~b) (44) 
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into the evolution equation (43). The unknown quantities j, A, and ~ are 
determined by separately balancing coefficients of the constant, sin jt, and 
cos j t  terms, while ignoring all higher harmonics. This determines the basic 
periodic solution of Eq. (43). 

Next, linearize Eq. (43) about 3o: 

flLflcfl + flcii + 0[1 + flL cos 3o(t)] + cos 3o - fit  3o sin 3o = 0 (45) 

where t /= 3 -  3o. We rescale time so that the linearized equation has coef- 
ficients of period 2~: let z = jt, then 

jaflLflCq" +j2flCt f '  + j [ 1  + fiL COS 30(V)] 

+ COS 30(3 ) --jflL3'O sin 6o = 0 (46) 

where the primes denote differentiation with respect to v. This has solutions 
of the form 

ilk = eiPk~Pk(z ) (47) 

where Pk(~ + 2~)= Pk(z). This suggests Fourier expanding Pk(v) and sub- 
stituting the resulting Oh into Eq. (46). Since Eq. (46) is linear, this sub- 
stitution yields (by balancing coefficients of each harmonic) a set of linear 
algebraic equations, which may be written in the matrix form 

M- a = 0 (48) 

where the ~,~ are the coefficients of the Fourier expansion for Pk(z), and 
the coefficient matrix M depends on Pk. The Pk are determined by the con- 
dition 

DET M(pk)  = 0 (49) 

which may be solved numerically. The results displayed on the right-hand 
side of Fig. 9 were produced in an afternoon's work using an HP-15 
calculator, for flL = 3.0, tic = 0.1, and five values of/ .  (Past experience has 
shown that the calculations work particularly well in this parameter range.) 
Once the exponents are computed, we can use the results of this paper to 
deduce the position and the width of the Lorentzian noise peaks. The 
expected power spectra are drawn on the left-hand side of Fig. 9 the 
relative heights of the precursor bumps have been chosen arbitrarily. 

We can understand these results in the following way. Since this is an 
autonomous system, one Floquet exponent is fixed at zero: 

p3 = o (50) 
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Fig. 9. Calculated values of the Floquet exponents (right-hand side) for the Josephson cir- 
cuit governed by Eq. (43), and the corresponding expected power spectra (left-hand side). The 
exponents were computed for/~L= 3.0, tic=0.1, and I =  10.0, 7.5, 5.1, 5.0, and 4.9, for parts 
a-e, respectively. The "bulls-eye" symbol in Fig. 8c indicates that two Floquet exponents coin- 
cide at p = [2jflL]-1+ i/2. 



Noisy Precursors of Nonlinear Instabilities 1093 

--the observed period-doubling instability occurs when one of the 
exponents is equal to (1/2)i. For any system, there is always one constraint 
on the sum of all N Floquet exponents(17)--in the present case, this con- 
straint is [-in view of Eq. (50)] 

p l + p 2 =  --(jilL) -1 (51) 

Thus, either I m p l = I m p z = 0 ,  or I m p l = I m p 2 = l / 2  [recall the dis- 
cussion preceding Eq. (7)], or 

1 1 
p l = p *  . . . .  F-ib, 0 < b < -  (52) 

2jB c 2 

In the limit of large L one can show that, in general, Im Pl = (I2flL~c) 1/2, 
which is about 0.183 for these parameter values (Fig. 9a). Physically, the 
nonlinear element is effectively out of the circuit at large bias currents /, 
and this corresponds to the resonant frequency of the remaining simple L C  
circuit. As 1 is decreased, the coupling with the nonlinear element shifts this 
frequency, thus the imaginary part of the exponents change (Fig. 9b) until 
Pl and P2 meet at p = - ( 2 j ~ L ) - ~ + i / 2  (Fig. 9c--recaU that the lines 
Imp = -1 /2  and Imp = +1/2 are identified). Note that as the bumps in 
the power spectrum shift position, their relative widths increase. This 
follows from Eq. (52): j decreases as I decreases, and the real part of the 
Floquet exponents determines the width and height of the precursor lines 
(see Fig. 7a). Once the exponents meet, they split apart along the line 
I m p =  1/2 (Fig. 9d), and period doubling occurs when Pl =i /2  [and so 
P2 = -1 / ( j f lL )  + i/2]. Figure 9e is drawn a little bit past the onset of period 
doubling. 

It is interesting to note that the power spectrum in Fig. 9b corresponds 
to the noisy precursor near a Hopf bifurcation (compare Fig. 6) even 
though no Hopf bifurcation occurs. In a sense, the system is near a Hopf 
bifurcation; however, the constraint (51) and the physical restriction that 
/3L remain finite prohibit the Hopf bifurcation from occurring. 

6. L I M I T A T I O N S  A N D  C O N C L U S I O N S  

In this paper we have examined the effect of external noise on the 
power spectrum of systems near an instability of a periodic orbit. We have 
looked at this problem within the context of a specific model for the noise, 
and found it possible to characterize the main features expected as a single 
parameter is varied. Our findings essentially extend the results familiar 
from the usual classification scheme of codimension-one bifurcations of dis- 
crete mappings. 116) We emphasize that the results depend only on the type 
of dynamical instability involved, independent of the physics behind the 
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governing differential equation (1). The wide occurrence of codimen- 
sion-one bifurcations in nonlinear systems, and the ubiquity of noise, leads 
us to expect the observation of these noisy precursors in most experiments 
on dynamical instabilities of periodic orbits. 

We now finish by pointing out the limitations of the theory presented 
above. The most serious is the linearization of the equation for the pertur- 
bation !!. Consider a system with fixed noise strength: as the instability is 
approached, the relaxation time increases, and the perturbation can grow 
in magnitude to the point where nonlinear terms are important. As a result, 
the scaling summarized in Fig. 7a will necessarily break down close enough 
to the instability. 

A second limitation concerns the basic assumption of Section 4, 
namely, that either a single or complex conjugate pair of "near critical" 
Floquet exponents dominate(s) the resulting power spectrum. This 
assumption, which is expressed quantitatively by the inequality (20), will 
be valid sufficiently close to the instability. In that sense, this 
approximation is complementary to the linearization approximation--for a 
particular problem, however, it may happen that there is no range of 
parameter values where both the linearization and inequality (20) are 
simultaneously valid. This potential difficulty seems particularly likely in 
systems with a very large number of Floquet exponents--that is, if the 
original equation (1) is a high-dimensional system. In that event, however, 
a different approach may prove fruitful. Going back to Eq. (17), which 
represents an exact solution of Eq. (5), we can approximate the sum as a 
weighted integral over the statistical distribution of Floquet exponents. 
However, it is an open question whether, given some large system of dif- 
ferential equations with a periodic solution, one can a priori say anything 
about the distribution of the Pk. 

Lastly, we reiterate that the present approach is not the only way to 
model the effect of external fluctuations. One alternative would be to allow 
the parameters  to fluctuate--rather than studying the additive noise 
problem defined by Eq. (5), the governing equation would involve mul- 
tiplicative noise. For some problems we expect that this approach would 
model the physics better than the present theory. Experience shows, 
furthermore, that multiplicative noise can lead to dramatically different 
results than the additive noise counterpart. (31'32) The primary difficulty with 
the multiplicative noise model is that the governing equation does not have 
periodic coefficients, so that the machinary of Floquet theory so heavily 
relied upon here is of no use. On the other hand, recent work by L. 
Arnold (33) on the computation of Lyapunov exponents for linear stochastic 
differential equations seems to give the extension of concepts necessary to 
tackle the multiplicative noise case. 
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APPENDIX 

The purpose here is to examine the contribution to Eq. (17) due to a 
zero Floquet exponent. As mentioned in Section 3, the importance of this 
case lies in their fact that an autonomous system possessing a limit cycle 
always has a zero exponent ON" The noisy precursors derived in Section 4 
will have additional features for autonomous systems, owing to the terms 
(r, k) = (N, N), (1, N), and (N, 1) appearing in Eq. (17). We examine each 
of these in turn. 

r = N ,  k = N .  The geometric interpretation of the zero Floquet 
exponent is that the limit cycle Xo is neutrally stable to perturbations along 
the orbit. In driven systems, the external forcing singles out a particular 
phase of the oscillation; conversely, for autonomous systems, perturbations 
cause the phase of the orbit to execute a random walk. This "phase dif- 
fusion" serves to broaden the 3-function spikes in the power spectrum due 
to xo. We remark that a straightforward evaluation of the r = N, k =  N 
term in Eq, (17) leads to unbounded growth proportional to t--this simply 
reflects the fact that the variance of the phase fluctuations grows with time, 
just as in any linear diffusion process. The divergence of this expression is 
of no concern, since it is obvious that our perturbative analysis is 
inappropriate for this effect--it is rightfully treated as a line broadening of 
the main 3-function spikes. We also observe that this effect is independent 
of e, and so does not change as the deterministic parameters are varied. 

r= 1, k-=N. From Eq. (17), this term is 

Io Ez ] h,~l(t)h,N(t+z) e -~(t-t') ~c,tgls(t')gm(t') dt' (A1) 
s l  

For the ordering given by Eq. (23), the integral may be evaluated in terms 
of the mean value Qo of the oscillating factor in the integrand, and 
expression (A1) becomes 

hml(t) h,~v(t + ~) Q---2~ (A2) 
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The power spectrum corresponding to (A2) is a sequence of 6 functions at 
co = 0, 1, 2 ..... which adds to the a-function spikes already present owing to 
the basic oscillation Xo. We note that this effect does depend on e. 

r = N , k = l .  This term is 

hm~v(t) hnl(t+z)e-~ fte-~(t c)[~Ks, gNs(t')gtt(t')]dt ' (A3) 
"0 st 

This leads to an expression like Eq. (A2), but with an additional exponen- 
tial factor: 

hmN(t) h. l( t  + ~) e - ~  Qo (A4) 
B 

This is precisely the form of Eq. (25): consequently, the effect of this term is 
just that shown in Fig. 3, corresponding to precursor bumps at 
co = 0, 1, 2,.... 

Summing up, we see that the net effect of these three terms is simply to 
renormalize the strength and broaden the 6-function spikes in the power 
spectrum arising from the unperturbed oscillation x 0. 
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